An approach to fuzzy default reasoning for function approximation

نویسندگان

  • Hisao Ishibuchi
  • Takashi Yamamoto
  • Tomoharu Nakashima
چکیده

This paper discusses fuzzy reasoning for approximately realizing nonlinear functions by a small number of fuzzy if-then rules with different specificity levels. Our fuzzy rule base is a mixture of general and specific rules, which overlap with each other in the input space. General rules work as default rules in our fuzzy rule base. First we briefly describe existing approaches to the handling of default rules in the framework of possibility theory. Next we show that standard interpolationbased fuzzy reasoning leads to counterintuitive results when general rules include specific rules with different consequents. Then we demonstrate that intuitively acceptable results are obtained from a non-standard inclusion-based fuzzy reasoning method. Our approach is based on the preference for more specific rules, which is a commonly used idea in the field of default reasoning. When a general rule includes a specific rule and they are both compatible with an input vector, the weight of the general rule is discounted in fuzzy reasoning. We also discuss the case where general rules do not perfectly but partially include specific rules. Then we propose a genetics-based machine learning (GBML) algorithm for extracting a small number of fuzzy if-then rules with different specificity levels from numerical data using our inclusion-based fuzzy reasoning method. Finally we describe how our approach can be applied to the approximate realization of fuzzy number-valued nonlinear functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PROPERTY ANALYSIS OF TRIPLE IMPLICATION METHOD FOR APPROXIMATE REASONING ON ATANASSOVS INTUITIONISTIC FUZZY SETS

Firstly, two kinds of natural distances between intuitionistic fuzzy sets are generated by the classical natural distance between fuzzy sets under a unified framework of residual intuitionistic implication operators. Secondly, the continuity and approximation property of a method for solving intuitionistic fuzzy reasoning are defined. It is proved that the triple implication method for intuitio...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

ADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH

In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...

متن کامل

Inheritance and Recognition in Uncertain and Fuzzy Object-Oriented Models

This paper proposes probabilistic default reasoning as a suitable approach to inheritance and recognition in uncertain and fuzzy object-oriented models. Firstly, we introduce an uncertain and fuzzy object-oriented model where a class property (i.e., an attribute or a method) can contain fuzzy sets interpreted as families of probability distributions, and uncertain class membership and property ...

متن کامل

Uncertainty analysis of hierarchical granular structures for multi-granulation typical hesitant fuzzy approximation space

Hierarchical structures and uncertainty measures are two main aspects in granular computing, approximate reasoning and cognitive process. Typical hesitant fuzzy sets, as a prime extension of fuzzy sets, are more flexible to reflect the hesitance and ambiguity in knowledge representation and decision making. In this paper, we mainly investigate the hierarchical structures and uncertainty measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2006